双涡轮增压器发动机
奔驰的双涡轮增压是涡轮增压的方式之一。针对废气涡轮增压的涡轮迟滞现象,串联一大一小两只涡轮或并联两只同样的涡轮,在发动机低转速的时候,较少的排气即可驱动涡轮高速旋转以产生足够的进气压力,减小涡轮迟滞效应。 常见的涡轮增压都是单涡轮增压,分机械式涡轮增压、废气涡轮增压和复合式涡轮增压。 机械式增压是发动机运转直接驱动涡轮,优点是没有涡轮迟滞,缺点是损耗部分动力、增压值较低。 废气涡轮增压是靠发动机排气的剩余动能来驱动涡轮旋转,优点是涡轮转速高、增压值大对动力提升明显,缺点是有涡轮迟滞现象,即发动机在转速较低(一般在1500—1800转以下)排气动能较小,不能驱动涡轮高速旋转以产生增大进气压力的作用,这时候的发动机动力等同于自然吸气,当转速提高后,涡轮增压起作用了动力会突然提升。 双涡轮增压器的串联与并联 在双涡轮增压的汽车上会看到2组涡轮通过串联或者并联的方式连接。 并联指每组涡轮负责引擎半数汽缸的工作,每组涡轮都是同规格的,如保时捷911 turbo,Skyline GT-R的RB26DETT,Supra的2JZ-GTE和BMW新的3.0双涡轮增压都是并联涡轮的杰出代表,其优点就是增压反应快并减低管道的复杂程度。 串联涡轮通常是一大一小两组涡轮串联搭配而成,低转时推动反应较快的小涡轮,使低转扭力丰厚高转时大涡轮介入,提供充足的进气量,功率输出得以提高,RX-7的13B-REW引擎就是串联涡轮的好例子。 常见的涡轮增压都是单涡轮增压,分机械式涡轮增压、废气涡轮增压和复合式涡轮增压。
VIM
(可变进排气歧管技术发动机) 兰博基尼VIM可变进排气歧管技术发动机 90年代中期以后,可变进气歧管技术在汽上越来越流行。这种技术能提高发动机在中低转速时的扭力输出,对燃油经济性和高转速动力没有坏的影响,因而能改善发动机的适应性。
通常的固定式进气歧管,只能按照发动机的具体要求,或者按照高转速和低转速时的要求进行最优化的几何设计,或者采用折中的办法,但是无论那种设计,都不能兼顾到不同转速时的需求。可变进气歧管技术则可以分两段或更多的级数来适应不同的发动机转速。 可变进气歧管技术与可变配气技术有些类似,但是可变进气歧管技术更注重的提高低转速时的扭力输出(对高转速时功率的输出提高效果不是很明显),因此这种技术被非常广泛的应用于普通的民用轿车上。
不过这也不是绝对的,由于它能提供更好的引擎响应性,所以在运动型车上也逐渐开始采用这种技术,例如法拉力的360和575。 与可变配气技术相比,可变进气歧管技术成本更低——它只需要一些简单的电磁阀和进气管形状的设计就能够实现;而可变配气技术则需要复杂而精确的液压系统进行驱动,如果改变气门行程,还需要一些特制的凸轮轴。
目前,有两种可变进气歧管技术:可变进气歧管长度和可变进气共振,他们都是通过进气歧管的几何设计实现的。下面我们就分别讨论一下这两种技术。 可变进气歧管长度 可变进气歧管长度是一种广泛应用于普通民用车的技术,进气歧管长度大部分被设计成分两段可调——长的进气歧管在低转速时使用,短的进气歧管在高转速时使用。为何在高转速时要设计为短进气歧管?因为它能使得进气更顺畅,这一点应该很容易理解;但是为什么在低转速时需要长进气歧管呢,它不会增加进气阻力吗?因为发动机低转速时发动机进气的频率也是低的,长的进气歧管能聚集更多的空气,因而非常适合与低转速时发动机的进气需求相匹配,从而可以改善扭矩的输出。
另外,长进气歧管还能降低空气流速,能让空气和燃料更好的混合,燃烧更充分,也可以产生更大的扭矩输出。车 为了更好的适应不同转速的进气需求,有一些系统采用了分三段可变进气歧管长度的设计,例如的V8发动机。每列气缸都有分三段可调的进气歧管,一共有24个进气歧管。事实上,奥迪并没有把进气歧管分开,它在中央转子周围布置了回旋的进气歧管,转子转到不同的位置就能获得不同的进气歧管长度。整个系统布置在V型发动机的V型夹角内侧。 兰博基尼还有更高档的Reventon具有三段式可变几何结构进气歧管,可变正式进排气凸轮轴技术的发动机。
油电混合动力系统
通常所说的混合动力一般是指油电混合动力,即燃料(汽油,柴油等)和电能的混合。 混合动力汽车是有电动马达作为发动机的辅助动力驱动汽车。 混合动力汽车的燃油经济性能高,而且行驶性能优越,混合动力汽车的发动机要使用燃油,而且在起步、加速时,由于有电动马达的辅助,所以可以降低油耗,简单地说,就是与同样大小的汽车相比,燃油费用更低。 而且,辅助发动机的电动马达可以在启动的瞬间产生强大的动力,因此,车主可以享受更强劲的起步、加速。
同时,还能实现较高水平的燃油经济性。
混合动力汽车的种类目前主要有3种: 一种是以发动机为主动力,电动马达作为辅助动力的“并联方式”。(Parallel Hybrid)这种方式主要以发动机驱动行驶,利用电动马达所具有的再启动时产生强大动力的特征,在汽车起步、加速等发动机燃油消耗较大时,用电动马达辅助驱动的方式来降低发动机的油耗。这种方式的结构比较简单,只需要在汽车上增加电动马达和电瓶。
另外一种是,在低速时只靠电动马达驱动行驶,速度提高时发动机和电动马达相配合驱动的“串联、并联方式”。(Fuel Cell)启动和低速时是只靠电动马达驱动行驶,当速度提高时,由发动机和电动马达共同高效地分担动力,这种方式需要动力分担装置和发电机等,因此结构复杂。
还有一种是只用电动马达驱动行驶的电动汽车“串联方式”。(Series Hybrid)发动机只作为动力源,汽车只靠电动马达驱动行驶,驱动系统只是电动马达,但因为同样需要安装燃料发动机,所以也是混合动力汽车的一种。